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Abstract-A non-linear bending theory of rubber-like shells undergoing large elastic strains is
proposed. The theory is based on a relaxed normality hypothesis and the incompressibility condition.
Using series expansion in the normal direction and applying some estimation technique a consistent
first approllimation and a simplest approllimation to the elastic strain energy of the shell are
constructt'd. lagrangian displacement shell equations are derived and the incremental shell defor­
mation is considered. The numerical results presented for one- and two-dimensional large strain
shell problems confirm the accuracy and efficiency of the proposed shell theory.

I. INTRODUCTION

The classical geometrically non-linear theory of thin isotropic elastic shells as developed by
Aron. Love. Chien. Mushtari. Galimov. Alumyaeand Koiter. to mention only a few veteran
names. has reached a certain degree of completeness in the last two decades. We refer to a
comprehensive review by Pietr'lszkiewicz (1989). where extensive references are given.
Within this classical theory the adequate description of shcll deformation can be based on
the simple kinematic hypothesis that normals to the undcformed reference surface remain
normals and inextensible during deformation. This allows the transverse shearing and
normal strains to be ignored from the outset in the description ofshcll kinematics. Ilowever.
the effect of change in the shell thickness due to the normal strains is taken into account in
the constitutive equations by using an independent static hypothesis 'Ibout the approxi­
mately plane stress state in the shell. As'l result. the two-dimensional surl:u:e strain energy.
being a sum of two quadratic functions describing the strdching and bending of the shell
reference surl:lce. is the first consistent approximation to the three-dimensional shell strain
energy [see Koiter (1960». Based on this classical theory ellicient computer programs were
developed and applied to analyze a number of highly non-linear problems of one- and two­
dimensional deformation of thin clastic shells within the full unrestricted range of finite
displacements and rotations [see e.g. Nolte (1983) and Nolte et al. (1986»). During the past
few years shell theories with additional rotational degrees of freedom had been presented.
accounting also for shear deformation [sec e.g. Gruttmann et al. (1989). Ba~ar and Ding
(1990) and Simo et al. (1990)J.

The aim of this paper is to derive a non-linear bending theory of rubber-like shells
undergoing large elastic strains. Contrary to the classical small-strain theory, in this case
the elTect of transverse normal strains becomes of primary importance and should be
taken into account not only in the two-dimensional constitutive equations, but also in the
description of the shell kinematics. In the first papers devoted to this problem it was usually
assumed that normals remain normals but arc allowed to change their length. The uniform
deformation in the normal direction due to stretching of the shell middle surface was
taken into account by Biricikoglu and Kalnins (1971). while Chernykh (1980. 1983) also
considered the quadratic normal deformation due to the stretching and bending of the
middle surface. These results were extended by Stumpfand Makowski (1986) who proved. in
particular. that within such a modified normality hypothesis the incompressibility condition
allows the determination of the non-linear distribution of strains in the normal direction.
in closed form. On the other hand. Simmonds (1985) assumed from the outset that the state
of a thin s'hell is cntirely described by the change of the mid-surface mctric and curvature
tensors. With the help of invariance requirements it was then shown that the corresponding
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surfal:e strain enagy funl:tion should be quadratil: in the bending strains and of the same
form as for a flat plate.

A more general theory for shells undergoing large rotations and large strains was
proposed by Makowski and Stumpf (1986. 1989. 1990). Using on one side equilibrium
equations and statil:al boundary conditions derived by desl:ent from the three-dimensional
continuum and on the other side the corresponding kinematil:al modd of a Cosserat
surfal:e with three deformable directors. the theory is statically and kinematically exact.
Analogously to Stumpf and Makowski (1986) the incompressibility condition is used to
determine the non-linear distribution of strains through the shell thickness in closed form.
Approximations arc entered into the theory by rcdlKing the three-dimensional I:onstitutive
equations to a two-dimensional form. Applications are considered for axisymmetric defor­
mations of shells of revolution undergoing large strains (Makowski and Stumpf. 1989).
Finally it should be mentioned that the shell model of Sinw c( al. (1990) 'KI:Ounts for a
uniform deformation in the transverse direction.

It is Iwt apparent. however. that during an arbitrary deformation of rubber-like shells
the initially normal materiallibres remain normal or straight. as it is assumed in the papers
I:ited above. All that follows from the known one-dimensional solutions given. for example.
by Taber (1987a. bj, Libai and Simmonds (1988) and MakE)\\ski and Stumpf (1989) is that
the transverse shearing strains arc usually small and only ncar clamped and loaded edges
or ncar point loads they have to be taken into account [sec e.g. Taber (1987b)J. Their
inlluelKe on the solution I:an be ignored in a wide range of parameters. Therefore. in this
paper we usc a relaxed normality hypothesis (oj, 'Kwrding to whiellmaterial fibres. initially
straight and normal to any undefE)rmed surfal:e parallel to the reference surface. remain
normal to it during the shell deformation (sec Fig. I). This hypothesis allows us to ignore.
from the outset, the transverse shearing strains. but docs not put any constraints on the
extensiElIl and ocnding of the initially normal material liores.

The beh'lviour of most rubber-like materials undergoing tinite strains is such that they
allow only for an isochoril: (volume preserving) or almost isochoril: deformation. e.g. Green
and Adkins (tWlO) and Green and Zerna (1%8). Therefore. in this paper we freely usc the
ilH.;ompressibility wndition (7).

The slwrt disulssion given in Chapter 3 shows that the range of shell problems in
whiell bending clrccts may become important is limited to shells of at most moderate
initial or/and dcl'onllcd thickness, undergoing at most moderate bending strains. while the
membrane strains should not exceed the order of unity (sec eqns (13) and (14)).

Within the I:onstraints and the range of parameters described above, the three-dimen­
sional Green strain tensor and the corresponding shell strain energy density arc expanded
into series in the normal direction. and ordcrs of all terms in the series arc estimated in
Chapters 4 and 5. As a result. by ignoring all small terms the two-dimensional consistent
first approximation (40) and the simplest approximation (47) to the elastic strain energy of
rubber-like shells arc I:onstructed and used to derive in Chapter 6 corresponding constituti ve
equations. It is interesting to note that both approximations arc expressed only in terms of
stretching and bending of the reference surface. The structure of our derived constitutive
equations in the case of thin shells seems to be simpler than the one suggested by Simmonds
((lJX5). Fur the special case of I:ylindrical deformation of shells our first approximation (40)

hl!. I. Undd'"rrn~d and d~r"rll1~d shdl ~krn~l1t.
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leads to the strain energy density of Libai and Simmonds (1981) and for shells of revolution
with axisymmetric deformations the simplest approximation (47) corresponds to the result
of Simmonds (1986).

In Chapter 7 the Lagrangian displacement shell equations are derived and in Chapter
8 the incremental formulation of the large strain shell theory is considered. In Chapter 9
we present the numerical results for several one- and two-dimensional large strain shell
problems. A comparison ofour one-dimensional results with those reported in the literature
shows the accuracy and efficiency of the presented shell theory. Results for two-dimensional
problems are not yet available in the literature.

1. NOTATION AND GEOMETRIC RELATIO:--;S

In this paper we shall follow. where it is possible. the notation scheme used by Koiter
(1966). Nughdi (1972). Pietraszkiewicz (1977. 1979. 1983. 1989). Stumpf (1981. 1986) and
Schieck (1989).

Let t l be the region of three-dimensional Euclidean point space occupied by the shell
in the undeformed configuration. In t~ the normal system ofcurvilinear coordinates {tr. (}.
:x = I. 2. is introduced such thut -11/2 ~ ~ ~ +11/2 is the distance from the middle surface
~Jl of t~ and II is the undeformed shell thickness.

The geometry of the undeformed shell middle surface ~Jl is described through its
position vector r = r(O'). At cuch point M E~Jl we define the naturul surfuce base vectors
a, = (~r/i'()' == r.X' the unit normal vector" == !/:'lla , x "II as well as the covariant components
of the surface metric tensor a'il = a, ·lI/l. of the surface curvature tensor h'/l = - a,' ".f/
= a,./I·" and of the surface permutation tensor 1:,/1 = (a, x a l,)'" such that 1: 11= /;~~ = O.
/;I~ = -/:~I = "Ia whcre a= Ill'/d. The reciprocal surface base vectors all and contravariant
components of the surface metric tensor a'il are then defined by a/I. a, = (5~ and a'/l = 11" af/,
respectively, when: ()/~ is the Kronecker symbol. A dot indicates the scabr product and the
symhol x the cross product of two vectors.

The geometry of the undd'ormed shell space ~l~ is now described in the convective
coordinates un, i= 1,2,3, ()\ == (, through the position vector p(W) = r(tr)+~"(O'). At
each point I'E ~l~ we have the natural base vectors ~, = P.,. the covariant components of the
metric tensor .tI" == ~,' ~, and of the permutation tensor /:"k = (~, x ~,). ~k with g = Lq"I, the
reciprocal base vectors~'satisfying ~'.~, == 15: and the contravariant eomponents g'l = g" g'
of the metric tenSM. These spatial L1uantities arc reluted to the surface L1uantities by

~, = II~aA' ~I = n. 9'11 = 11~/I)JaA'" .tid = 0, .till = I,

g'=(/1 1)~aA, gl=n. 9'/1 =(/1 ');(/I-');:aA/I, .tid =0, 9 13 =1, (I)

where the shifter II~ and its inverse (,I I)I are given by

I
(II-I)~ = [J~-~(211JI-h;)J,

II

II = I/I~I == J~ = 1-(211+(K. 1I == !h~, K = !1:'A/;IIllh~hJf..a (2)

Consider now an arbitrary smooth deformation x: t~ -0 ~il. [J(Oi) = X[p(Oi)), of the shell
described in the convective coordinate system {O'}. The geometry of the deformed shell
space 'i't is now described by geometric quantities analogous to those describing t\. only
now marked by an overbur: gi' .ij,j' g'..iji j• etc. Introducing the deformation gradient tensor

F = Vx == g, ® gi. g, = Fg" (3)

where ® indicates the tensor product of two vectors, the strains in the shell space are
described either by the right stretch tensor U == (FTF) I, ~ or by the Green strain tensor
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(4)

where 1 is the met! ic tensor of i.~,

During the deformation X the shell middle surface moves from ~Jl to ~JJl defined by
i(lP) = x[r(W)]. The geometry of9.fi is described by quantities analogous to those describing
9J1. only now marked by an overbar: a" ii. ii'li' fi,#, Ll. ali, (i'Ii, ii, K. etc. The Lagrangian
surface strain tensor "I = i'xlia' ® ali and the tensor of change of surface curvature
K = K,{la' @ ali are usually defined by

(5)

They are functions of the displacement field u through r = r + u.

3. BASIC ASSUMPTIONS

In order to simplify subsequent transformations we ignore the transverse shearing
strains hy assuming from the outset that E" = O. or equivalently

(6)

We call this assumption the relaxed normality hypothesis. Indeed (sec Fig. I). the hypothesis
requires the material flhres. initially straight and normal tl) any undeformed surface Z
dctined hy ( =: cons!.. to remain always normal to it during the shell deformation. Please
note that (6) does not put any constraints on the extension and hending of the initially
normal ma teria I Ii hres.

In what follows we also assume that during the shell deformation the following
incompressihility condition

det F =: ).11 =: I
.cJ

is satisfied. where

.£1 = I ,Ilk,. ()"+1E")(""'+1E'''')()'''+1E''')f)l. ('/mn (J - lUI - J ( k _ ... J.. •

.cJ

Under the relaxed normality hypothesis (6) we can reduce (X) to

If we introduce the unit vector ril such that

g, = ;.,(~)ril(~).

(7)

(X)

(9)

( 10)

(I I )

it follows from (9) that ;., = )'J(~) describes the stretching of those material fibres which
are initially normal to 9.11. Under the additional incompressibility condition (7) the stretching
;" is uniquely defined through E'II by
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(12)

Under the assumptions (6) and.(7), the non-linear theory of shells to be discussed in this
paper should properly describe the shell deformation caused by the stretching and bending
of its reference surface and by transverse normal strains according to (12). Let y and" be
the greatest eigenvalues of the surface strain measures y and re. while Rand Rbe the smallest
principal radii of curvature of 9Jl and 9.». respectively. Let (} be a small parameter such that
O~ « I, i.e. I + O~ ~ I. [t is commonly accepted that a shell theory can be applied only to
such problems of shell-like solids in which neither hand R nor Ii and R are of comparable
order. where h and Ii are the shell thickness in the undeformed and deformed configuration,
respectively. It is also known that if the deformation is finite. i.e. y > 0(1). where O( ) stands
for "of the order of". then for sufficiently thin shells bending effects can be ignored and the
simple membrane theory can be applied. as in Green and Adkins (1960). Therefore, the
range of shell problems in which the bending effects may become important is limited by
~' ~ O( I). Within this range it follows from (12) that Ii = h[l +O(y)] = O(h). Moreover, since
'\ = O(IIR+ IIR). the bending strains in the shell space can reach the order h" = 0(0)
provided one of hiR. hiRor both are 0(0). Therefore. in the subsequent derivation of non­
linear relations of shells. we assume the following ranges of admissible values of the
parameters:

h h
R~ 0(0). R~ 0(0),

y~O(I). h,,~O(O).

( 13)

( (4)

4. SIIELL STRAIN MEASURES

Sin<:e by (12) and (9) EJ] is entirely determined by E.,,, lel us introduce the tensor
E = E,/sr.' ® f!,ls ddined on the surface 6 and expand it into series with respect to the normal
coordinate

( 15)

with

n ~ I;

( 16)

(17)

( 18)

where ( ).3 denotes the covariant derivative in the (-direction with respect to the metric g,/.
Introducing the curvature tensor of 6 by

( 19)

(20)

for two first covariant derivatives in (17) we obtain

SAS 29: 6-C
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(2\ )

(22)

Defining the curvature tensor ii,p of ~ analogously to (19) we obtain under the relaxed
normality hypothesis

which allows us to find

ll'IU = - (m.,· gid,)

- (m, J • gl/)., + li1, J • f~llg, + Il~g, .g,,//

= ;""",-I./i/i;/1

where ttl = (g\ X g, Ii •./(/ is the unit normal vector on ~ (sec also eqn (111l. and (
the surface covariant ditlt:rentiation in the metric ,(I'll'

Now with the help of (19) -(24) we obtain for X'II and Jr,II

wher\: with thc help of ( 12) two surfal.:c invariants havc hecn intmdul.:cd

., JII I
1,=1'1\'_"= _= .

. II /,+"",+"(",.,/1_,,,',,1')
". - I 1 - I l: I II j III ~

(24\

)/1 denote"

(25)

(27)

(2i')

Note that according to (27) t. == ),(,',/1). and from (25), (27) and (5) it ldlows that
X'II == X,/I(,')I""')' Then:fore. it is appan:nt from (25) (2X) and (5) that Jl == /1(,',/1, ""Ii) and

Jr'II == 1["11«(';1" "'I')'
For higher orlkr terms of the expansion (15) it is possibk to prove [sec Schieck ( 19X9)I

the following estimates

IIE,n.,,11 0(1 I ') I. - 1/:>-
II E,n) II - U' R.' L' "".

where L is the smallest wavelength of deformation pattern on '.lJl allowing the estimation
of orders of the surface covariant derivatives in the metric £1'/1 by \\ ( ) ,I:' ( ) I: == O( IL),

Let us deflne the small parameter 0 by

DO)

Using estimate (29) and eqns (12) and (13) it follows from (15) that within the rdative
error 0(0') in the bending strains X thc strain tensor Eof the surfacc.z can be approximated
by the following quadratic expression

ClI)

This approximation is compatiblc with the assumptions (6) and (7),
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5. ELASTIC STRA/:'Ii E:'IiERGY OF THE SHELL

695

The constitutive equations of an incompressible isotropic solid are described by the
three-dimensional strain energy density W(E) == W(lI./J. defined per unit volume of ,~~.

as the function of the two standard strain invariants I[ and I~ with I) = I [e.g. Green and
Zerna (1968)). Since by (12) and (9) E\) is entirely determined by E,#, we can always express
EJJ as a function of E'/J and obtain ~t'(E) from W. This is a consequence of the assumed
incompressibility of the material. but it should be pointed out that it does not exclude
hydrostatic pressure or transverse normal stress.

The shell strain energy function. per unit area of ~m. can be defined by

(32)

Let us expand the integrand of (32) into series with respect to , and integrate it through
the thickness to obtain

{ ( h~) [h~ (h~ h~ )
<(l = h W I + ~- K +WI' --- hAv +-- + ~ ...., K ?7t

(Ill 12 ( ) 12 A.'" 24 160 -

(
".\ ht> ) ]+ + .. ~. K (P7t 'X' 7t +4v 'X' F ) - .Ino 10752 - 'Cl ",'Cl '(1)

(33)

where

(34)

The range of values that can be taken by derivatives (34) is determined by the material law
and by the range of admissible membrane strains (14). However. all we need in order to
simplify (33) is to estimate orders of magnitudes that might be taken into account by (34)
and not their precise values. This can be done on the basis of the following approximate
considerations.

Let us take, as an example. the incompressible Mooney material [sec Mooney (1940)
and Green and Adkins (1960») for which

(35)

I "" I1= l.j+I.;+ ',-,-,,,
. I.j/.~

;.; = 1+2£"

(36)

(37)

where ;" arc principal stretches. E, are principal Green strains and G is the shear modulus.
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Let i., be the larger principal stretch value. Then within the admissible i' ~ O( I) estimates
for WI") can be obtained by reducing the problem to the one-dimensional case. i.e. assuming
;'2 == I. which gives

E 2 dWEI + E f d" W I
W = 2G I+;E

1
' dEl = 4G I +2E~' (dEd" = \G( -I)"n! 2" (i+2E~);;-~f' n ~ 2.

(38)

It follows now from (38). (34) and (14) that the order of WI"I can be estimated by

We have applied the same technique to several material laws other than (35) and in each
case the estimates were of the order of (39). which indicates that (39) does not depend upon
the material law. Indeed. for y « I and with the absence of initial stresses the function IV
of any elastic material can be approximately described by a quadratic function of strains.
which immediately leads to the order estimates (39) u and (39) J for 11 = 2.

It follows now from (39) and (29) that. to within the relative error Oun in the bending
energy. the shell strain energy function (33) can be approximats;d by

• hI < ' h 1 •

<I> = hIVIIl)[1 +0(0'») + Ii W( I)' (1t - h.x HI +0(0'») + 24 W'!I' (X @ xHI +0(0')]. (40)

We call the expression (40) the CtJ/lsistelltjirst approximatillll til til£' eilistic straill £'/lerg.\' III'
fllhlwr-like shells.

The estimate in (40) suggests that within the same relative error it is possihle to simplify
consistently the strain measures (25) and (26) for various ranges of admissihle strains. Note
that within the admissihle order of at most moderate bending strains II", ~ 0(0) three
principal cases can be discussed:

(A) y = O(I),i.e.III-:IY = 0(0). Here WIll) = GO(I).IIW",II = GO(I),IIWI!,II = GO(I).Since
hllxll = 0(0) and h!II1t1l = O(O!) the strain energy (40) is dominated. to within the
relative error Oun, by the first term, which leads to

(41 )

The strain energy function (41) describes the membrane theory of rubber-like shells.
The possible simplifications of X and 1t are irrelevant here. since those strain measures
themselves are included in the error margin of (41).

(8) i' = 0(0 2
), i.e. Ylh", = 0(0). In this case Willi = GO(O~), IIWlllil = CO(IJ!). IIW'!111

= GO(I). Since again hllxll = 0(0) and h 2111t11 = OUn, the strain energy (40) is
dominated, to within the relative error 0(0 2

), by the last term which leads to

(42)

Within the same relative error 0(0 2
) the change of curvature measure "I. in (42) can be

simplified to be

(43)

The possible simplification of 1t is again irrelevant here, since 7t itself falls into the error
margin of (42). Additionally. here WI2l (y) can be expanded into series of y. and to
within the relative error 0(0 2 ) only the first constant term for y = 0 can be taken
into account. This leads to the modified elasticity tensor H defined in the reference
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configuration. It corresponds to the classical one of the geometrically non-linear theory
of elastic shells

W(2l(Y) = W(2)(O)[1 +O(O~)]

C'W I=~ [I +0(0 2
)] = H[l +O(O~)],

cy c'l 1= 0
(44)

(45)

where E is Young's modulus of the material in the undeformed configuration and v is
the Poisson's ratio which. for the incompressible material. should be taken to be
\' = 0,5.

The strain energy function (42). with (43) and (44). describes the inextensional
bending theory of rubber-like shells.

(e) "'I = 0(0), i.e. ylll", = 0(1). In this case WIll) = GO(O~), IIW(1l1i = GO(O), IIWw ll
= GO(I), which together with Illid = 0(0) and h 2 11nll = O(O~) shows that the first
and the third term of (40) arc GhO(O~). while the second term is GhO(OJ). Therefore.
to within the relative error Oun all terms in (40) should be taken into account.
However, the strain measures appearing in the second term of (40) can be approxi­
mated to within the relative error 0(0) by

(46)

As a result. the strain energy function (40) with (25) and (46) describes the bending theory
of rubber-like shells.

Simihar discussion performed for the weak bending case. when 'I = O(JO), hKIy = 0
(j/J). and for the strong bending case, when 'I =O(ojO), Ylh", = O(JO), leads to within
the relative error O(O~) essentially to the results given for the case C of the bending theory
of rubber-like shells.

As a result of the discussion given above, within the whole range of admissible mem­
brane strains and curvature changes (14) and within the associated range of thickness-to­
radii ratios ( 13), the consistent first approximation to the elastic strain energy of the rubber­
like shell takes the form (40). where the full expression (25) for X and the consistently
approximated expressions (46) for the corresponding strain measures appearing in the
second term can be used.

Let us note that the maximal influence of the second term in (40) has been found to
be in the case C of the bending theory, where the relative error of the strain energy function
resulting from dropping those terms can be estimated to be tiO(O) with respect to the first
term describing the membrane strain energy. Although such an error cannot be included
in the consistent relative error O(O~), it is apparent that the contribution of the second term
to the strain energy function (40) is very small indeed, considerably reduced due to the
additional multiplier 1/12 to the terms, whose contribution to (40) has already been
estimated to be at most 0(0) as compared with the first leading term. Therefore, in many
engineering calculations of rubber-like shell problems it is reasonable to simplify (40)
further by dropping the second term, which leads to

(47)

We call the form (47) the simplest approximation to the elastic strain energy of rubber-like



B. SCHIErK el al.

shells. It takes into account only the primary parts of the shell strain energy due to the
stretching and bending of its reference surface and due to the corresponding transverse
normal strains.

Our numerical tests show that the usc of the simplest approximation (~7) needs over
33% less computer time than the consistent first approximation (~O). At the same time. in
most of the examples the numerical results arc essentially the same. while for various
examples the differences in the numerical results do not exceed 20

0. It seems. therefore. that
for many engineering applications the simpkst apprO\imation H7) might be a very attract­
ive alternative to HO).

6. CO:-';STlTUTIVE EQUATIO:-';S

If the strain measures }'. "1. and 11: are tre~lted as independent. the tirst variation of (40)
gives

with the constitutive equations:

11 (1) h ' .
f1'11 = _/(',/1 + ["'("1""(" /,"'1) +(,,/1"',1''1 V I

1 - 1 1 ~ I - 1 "'I' - "'_'" 1 """",,1' .
( "III _""t

h'
( _. (',/I/t + (',/1,,,./. )I::! 1 ,r 1 A,J')I'

h'
G'II

12
(~9)

The components of tangent elasticity tensors of various orders arc dclined analogously to
(34) hy

G'II,'" (50)

In (~l»), 11'11
, 1/1'1

1 and k,/I arc the symmetric surface stress measures which arc work-conjugate

to the strain measures ~"II' '1..'11 and IT'll' If the simplest approximation (47) is used. the terms
ulH.Jcrlined by the solid line in (4X) and (49) have to be omitted.

If f,;,/I is used as a bending strain measure. it follows from (25)· (2X) that

(51 )

This allows the expression of the variation of <I) in a form which is well known from the
classical geometrically non-linear theory of thin elastic shells

(52)

only now we have to introduce
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(53)

The symmetric surface stress measures N,/J, AI,/J are work-conjugate to the surface strain
measures ,',/J' ",/J' respectively.

Within the consistent first approximation it follows from (25) and (46) that

)"x -;' (h L') [( I + """) l'~ "'''</'] :,.. +; "L' + h<~" + b)' ' ..( >11 - r. ,/J -",/1 -" ( --, v{)~ r'V",/J -'U'</J /JU/J<'

(54)

This allows us to give the constitutive equations for N,/J and M,II in the following explicit
form:

(55)

Again. if the simplest approximation (47) is used the terms underlined by the solid line in
(55) have to be omitted.

When the initial thickness of the shell is assumed to be small. i.e. h/R = OUr). the two
last terms in (25). the term with the dashed line in (40) and all terms including h'll in (46)
can be omitted within the error of the consistent first approximation. and "'1..,11 in (25) can
be approximated by i''',/J' In this case terms underlined by the dashed line will not appear
in the corresponding relations (4S). (49), (54) and (55) and therefore our constitutive
equations become independent of the initial curvature of the shell reference surf~lce. as was
already suggested by Simmonds (1985). However, the structure of our so reduced consti­
tutive equations (55) seems to be simpler than the one following from Simmonds (1985).

7. LAGRANGIA:"J DISPLACEMENT FORM OF SHELL EQUATIONS

The surface strain mC.lsures {"II and ">11 are known functions of the displacement field
U = /I,a' + 11'0. They arc given by the following exact vector expressions [cf. Pietraszkiewicz
( 1983)J

(56)

where
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a, = a,+u.,. (57)

Let the boundary (f of~l consist of a finite set of piecewise smooth curves with the position
vector r(s) = r[O'(s)]. where .I' is the arc length parameter along (f. At each regular point
At E (f we introduce the unit tangent vector t = dr ds == r' = ('a. and the outward unit
normal vector v = r., = v'a. = t x n. where ( ).•. denotes the outward normal daivative
at (f.

We describe the deformation of the shell boundary by the displacement field u(s) and
its normal derivative u,(s). Then the geometry of the deformed boundary ~ can be expressed
by:

r' = a.(' = t+u'. r., = a.v' = v+u.,. ii = a.,. x r'. ;. I = Ir.. x n. (5X)

Let p = p'a. +pn be the external surface force resultant per unit area of ~Jl and let the
undeformed boundary (f consist of two parts. (fu and (fr, with (fu v (fr = (f. where on Ifu

geometric quantities and on (fr static quantities are prescribed. We assume that on (ft

the external boundary force resultant T* = T:v + T,* t + T* n and the moment resultant
U* = H:v+ IIt*t+ lI*n arc given. both per unit length 01'<£. They arc determined through
the prescribed external boundary surface force vector f*, defined per unit area of the lateral
boundary surface i1'lt of the undeformed shell

T* ds = f·h.. ~ f* dA.
h ~

H* ds = f,II~ f*( dA.
iI,::!

(59)

If geometric and static quantities arc given on the same part of (f they must be comp­
lementary with respect to the external virtual work (63).

Let us denote displacement fields admissible, if they satisfy suflicient dillcrentiability
conditions in ~Jl and on If" the geometric boundary conditions (74) in homogeneous form.
Then the deformed shell is in an eljuilibrium state if for all geometrically admissible
virtual displacement fields ()u the following Lagrangean principle of virtual displacements
is satisfied:

(i[U: bU] = o. (60)

where the functional of virtual work G is defined through the internal virtual work G, and
the external virtual work Gc by:

Gc = fLp' ()U dA +I(P . Ju +H*' (iii) ds.

(61)

(62)

(63)

From (58») it follows that on (f the normal vector ii(s) depends on the displacement
derivatives u'(s) and u.,(s) and therefore can be given as a function of the two vector fields
u(s) and u.,(s) with six independent components. Introducing in ~l and on If the constraints

ii-3.=0. ii-ii=l in~Jl

ii'r' = O. ii'ii = I on If

(64)

(65)
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then the set of independent geometrical variables on (f is reduced to four. In this paper we
choose as geometrical variables on (f the displacement field U(5) and the scalar component
n,(s) of the nonnal vector ii = n,v+n,t+nn.

The variation of ii in ~Jl and on (f can be found by varying the constraints (64) and
(65) leading to

I
Jii = - [(v x ii)ii' bU' +(i' x ii)<5n,),

tlv

tlv = (i' x ii)' v, on (f

where the scalar function flv(S)

fl v = ii'v = A.(u'xv-n)'u.•

(66)

(67)

(68)

was tirst introduced by Pietraszkiewicz and Szwabowicz (1981). The use of scalar functions
other than n" as fourth geometrical boundary variable is considered in Makowski and
Pietraszkiewicz (llJl)lJ).

Using (64) the variation of the strain measures (56) leads to:

();",. = ~(a,' i5u./1 +a/I' (5u.,)

()I':,/I = ~(ii,,'(5u,/I+ii,/I'(5u.,+a, '(50./1 + a/I '(50.,)

with (66) (6lJ) the virtual work fum;tional (61)-(63) can be transformed into

(69)

G[lI: ()111 = - JL ('1'/'1/1 + p) • ,5u + I[(p _IU), Ju + (M - M· )(5f1,) d,l'

+L(Fi -Fn·,5uJ+i W'i5u+MJfI,)ds. (70)
J tf"

where asterisks indicate prescribed boundary functions, but depending on the deformation.
and the sum L is taken over all corner points MjE IJ:r. In (70) the following short notations

/

are used:

'I',l = N'/la,+,\;/ '/Iii" + [(M"a,J I. ' a/l] ii,

P = T/1v/I + ..... p. = '1'.+ F·',

(71 )

It follows from (70) that on IJ: the static quantities P(s) = P[u(s), //.(5)] and M(s) =
M[u(s). flv(S)] arc work-conjugate to the chosen geometric quantities u(s) and n.(s), respec­
tively.

Introducing (71) into the virtual work principle (60) we obtain the Lagrangian equi­
librium cquations
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(72)

and the static boundary and corner conditions

PIs) = P*(S). J/(s) = .\1* (I) on ~I

F} = F, at each corner point .\1 E ~I'

The corresponding work-conjugate geometric boundary and corner conditions are:

(73)

u(s) = u*(sl.

II,(U(S), u,.(s)) = II~(S)
on ~1I

U, = lit at each corner point J/, E\tu' (74)

With (74) the 1a~t integral term of (70) vani~he~.

It should be pointed out that the equilibrium equation~ (72) and the static boundary
and corner condition~ (73) arc linear in N'!I and .\/'11. but n~~n-rational in the displacement
u. This non-rationality i~ caused by the presence of;' in the dcllnition of "',/1 in ~J)l and by
the non-rationality of" on \t. The geometric boundary condition (74), depends non-linearly
on the boundary di~placellH.:nt 11(.1') and its normal derivative u,(s).

[n the ca~e when the externalloading~acting on the shdl have a potential Hu) ~uch

that (/,.[11: (illl = - () /'[11: (hll a functional of total potential energy exi~ts dclined by

(75)

where for the strain energy dcn~ity (I)(~'" .. "'",) wc havc to introduce (40) or (47) expres~ed

as a fUIH:tion of the displacement II. Then we can formulate the principle of total potential
energy for large strain ~hell problems as follows: [I' for all geometrically admissible dis­
placelllent lields II satisfying the geometric boundary conditions (74) the variation (i)
vanishes

(76)

then u is an eq uilibri um configuration satisfying (72) and (73) as Euler Lagrange equations.
We want to point out that (76) is a stationary variational principle. Following Stumpf

(1976. 1979) we can also consider under which additional restrictions it is a minimulll
principle and a dual maximum principle can be formulated. Other variational principles
can be constrll\;ted for the presented large strain shell theL)ry following Stumpf (11.)76).
Schmidt and Pietrasl.kiewicl. ( 19S I). Schmidt (llJS6) and Sl.wabowicz (19X6).

X. I:-;CREMENTAL FOR\ILlLATIO'.;

Let us assume that the external loads arc specified by a single parameter :1. E A c R.
For smoothly varying :1. the regular solutions of the shell boundary value problem (72)
(74) form an equilibriulll path u(:1.). By virtue 01'(60) u(:1.) is a weak solution of the boundary
value problem for a fixed :x if G[II(:1.): (ju] = 0 for all kinematically admissible virtual
displacements (iu. [n the nUlllerical approach the unknown equilibrium path u(:x) is divided
into a finite number of equilibrium states corresponding to discrete values of :x1.:1.> .... :1.".

:1." .. 1••••• :1.xE A of the load parameter.
Let Un = u(:1.") be the equilibrium solution we arc looking for, and let u:,') denote the

ith approximation to u". which may not belong to the equilibrium path. [n order to construct
a correction .1u~'· 11 allowing us to determine the next approximation u:,'+ 11 = 11:/) +.1u~'+ II

to u". we use the consistent linearization of G[u; ()u] at the approximation u~,i). which allows
us to replace eqn (60) by
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(77)

The first tenn in (77) denotes the directional Gateaux derivative of the functional (61)
calculated at the point u~i) in the kinematically admissible direction ~U~/''' I). This tenn being
linear in the unknown ~U~i+ I) leads to the definition of the stiffness matrix of the problem.
If u~" does not belong to the equilibrium path. the second tenn in (77) allows the calculation
of the unbalanced force vector.

In order to simplify the notation. in the following part of this chapter we set u~r) == U.

~U~i+ II == ~u. while the values of corresponding external loads at u. will be denoted by
p(2.) = P. == p. T(2.) = T. == T. H(2.) = H. == H.

Let us consider a curve U('1) through the ith approximation to U. such that in the
neighbourhood of U

U(IT> = U+'16u. (78)

Then the Gateaux derivative of the functional G taken at U in the kinematically admissible
direction 6u is given by

. d . ]
~G[u; ~u. <~II] = d G[U(If}; <lu I~~o.

'I
(79)

where G[U(IT> ; Ill.] is defined by (61) -(63) with U being replaced by U(IO. Along the curve
U(If} the corresponding Lagrangian surface stress and strain measures in ~Jl arc denoted by
N(IJ}, M(IJ}, Y(IJ}, 1\(1f}. while the corresponding Lagrangian surface forces in ~Jl and bound­
ary forces and moments on (f arc denoted by p(IO. T(IO and 11(10, respectively.

In the internal part ofWl the linearized increments of ii'I, ii and (50 at II in the direction
uf 611 follow from the identities ii,l .ii, = <l~. ii/I. ii = 0 and (66) :

.:\(Jii) = B/I • bu,,/o

B = [(a' .:\u,Ja-a.:\u.~]® n+(n ·.:\u,.)a ® a.

(80)

(81 )

This leads to the following incremental strain mcasures and their incremental variations:

':\;"'1 = ~(ii,' .:\U.fl + ii'i ..:\11,,),

.:\/\ ,/1 = ~ {ii., . ':\u./I + ii'/I •.:\u" + ii, •6ii,II + ii.11 • .:\ii.,]-,

':\«);',/1) = ~(.:\u., . I} II ,(I + .:\11.(1" <)U,,),

~«}I\:,(I) = H.:\ii., •J u,(1 + .:\ii,(1 •i5 u., + .:\11., • i5 ii./I + .:\u,/i •Jii.,

+ ii, . [.:\(Jii)1./1 + ii,l ' [6(Jii)L}.

The corrcsponding incremental work-conjugate stress measures arc

(82)

(83)

(84)

where the tangent elasticities C~/i·~. n = 1.2.3,4. are defined through further differentiation
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of the constitutive e4uations (55). i.e. the strain energy function <J) given by (40) or (47).
with respect to "'11 and 1\'11'

]\OwO with the help of (62) and (81 )(84) the interior part of (79) can be presented in thc
form

L1(;,[1I; L111. ()u] = j~J'o, (3t7,,+i'1t7,,)d..l.
.,.1,

(86)

L1rr" = L1N'~()'·'/I+L1.\I'II()I\'/1 = ()"'/IC~/I"'L~/'", + ()",/ICY"".1I\·,;,

+ 1)1\',/,c;t';"L1;';" + ,)I\,/,CY""L1"';j,' (87)

In the finite clement implementation of the shell theory thc term (87). appearing as a result
of thc lincarization of stress measurcs. allows thc constrl1l:tion of the matcrial part of the
tangent stilfncss matrix at 1I. Thc term (88) resulting from the changc of shcll gcomctry
leads to thc geometric part of thc tangent stilfness matrix atll.

Analogously we havc to derivc the (J;itcaux dilfercntial of the external virtual work
(63) leading to:

Mic (lI: All. ,)u) "'"-'0 jOj' All' 1)1I d..r + j' [.1'1'*' ,)1I +AII*' I)ii t 11*' L\(lj'-'lI ds, (S9)
'lll l!1

wherc the im;rel1lental values of the external loads arc detinet! by

AT* = d T*( )1
I 'I" (/.

Ul

d
AlI* =, lI*(I!lI., "

UI/
(90)

and the il1l;rcl1lental values of ii and I)ii at the shell boundary If hy:

d I
Aii = ii[(I!loll,(I/)JI" (/ = [(v x ii)ii' Au' + (i" x ii)AII,1

dll a,

d
A(I)ii) = Ijii[lI(l!loll,(I!l: l)lI.I)II,II" (/

dll

1 .
- .[(AlI'xiitr'xAii)·vl[(,·xii)ii·,)lI'+(i"xii)I)II,1

(/\~

+ I [("xAii)ii'l)lI'+("xii)Aiiol)lI'+(AlI'xii+r'xAii)()II,+(r'xii)A(I)II,)J. (91)
a,

Introducing (91) into the houndary intcgral of (89) and using some furthcr transformations
and intcgration by parts wc can derivc an integral expression linear in ()Il. Ijll, and L1(I)II,).
where L\(')II,) is the second G;iteaux dilli.:rential of II, dcpcnding non-linearly on u [sec
Stumpf(1984.1986)j.
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LSU

Mi\1LS

MI.LJ
Ml.lJS

Finally we have to consider the second term of (77) representing the virtual work of
the approximation u~;). It vanishes. if U~') is an equilibrium configuration and for non­
equilibrium configurations it is a measure for the unbalanced forces.

9. COMPUTER IMPLEMENTATION AND NUMERICAL APPLICATION

The strain energy density (40) or (47). with corresponding formulae for WI.' and for
the strain measures (25). (46). (56)-(58). is a function of displacements and their first as
well as second surface derivatives. Therefore. in the finite element approximation C I

interelement continuity is required. In order to fulfill this and all other mechanical require­
ments a triangular high-precision doubly-curved shell finite element with 54 of freedom is
selected. The basic characteristics of the element arc described by Cowper (1972) and Harte
(1982) and developed to the form used in this paper by Nolte and Schieck (1985. 1986) and
Schieck (1989). In this element biquintic polynomials arc applied as shape functions for all
three displacement components. The numerical calculations of the highly non-linear shell
problems presented below have been performed on the 2-pipeline CDC Cyber 205 vector
processor available at the Ruhr-University of Bochum. In order to analyze the results and
to show the performance of the corresponding computer program various examples of shells
made of Neo-Hookean and Mooney material have been calculated. The results obtained
for the first approximation theory (40) and for the simplest approximation (47) arc com­
pared with those given by Libai and Simmonds (19S.1. 19S5) and Taber (19S6). Here we
present them for three large strain shell problems. whereas further examples with con­
sistently restricted strains and rotations can he found in Schieck (19S9).

The I~Jllowing notations arc used:

--J\looney material. I.arge strains. Unrestricted rotations (sec eqn (40».
!\looney material. I.arge strains. Unrestricted rotations. Simplest approxi­
mation (sec eqn (47».
Mooney material. !\Ioderate strains. I.arge rotations. Simplest approximation
(sec Schieck (11)89».
I.inear material. Small strains. Unrestricted rotations (classical geometrically
non-linear shell theory for small strains am! unrestricted rotations).

The theory variant MMLS is derived from the variant MLUS by assuming moderate
memhrane strains allowing to simplify (27) to ;. ~ I - y~ and ;. ~ ~ I - 2y~.

9.1. Cylinclricl/l shell /lwclL' (~( Nt'o-f1ookL'l/n IIIII/crilll /lncler the uctioll of't\\,o !int' ./iJrces
upp!iccl to clillfll('{rit'tll~1' opposite points

This one-dimensional example was calculated analytically by Libai and Simmonds
(11)8.1. 1(88) within the large-strain theory of plane rods using several types of approximate
one-dimensional theories. When the displacement II' of the points where I~Jrces arc applied
is II';'R := 0.5 the corresponding membrane strains are,' ~ 0.05 and the bending strains are
111": :::: 0.25. It is seen from Fig. 2'1 that our results arc in good agreement with those of Libai
and Simmonds (1988). although for 11'(R = 0.5 the relative deformed thickness under the
force becomes hiR~ 0.5.

It follows furthermore from Fig. 241 that the simplest approximation leads to practic,tlly
identical results as the consistent first approximation theory. In contrast to this the small
strain solution LSU gives quile different results.

1).2. Clal/lpcd circl/lar platc 1IIudc of N£Oo-f!ook£O(/1I11111t£Oriall/llder prc.l'.l'/Ir£O load
This problem was solved analytically by Taber (1986) for different types of boundary

conditions. For clamped boundary the behaviour of the plate is such that ncar the boundary
bending strains arc important. but when we move towards the center the membrane-type
behaviour becomes dominant. rt follows from Fig. 3 that our results for both theory variants
MLU and MLUS are identical or in good agreement with Taber (1986). After reaching
membrane strains of about 3% the moderate strain solution MMLS slightly differs from
the large strain solutions MLU and MLUS. Please note that the classical geometrically
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Fig. 2h. Cylimlril:al shdl suhjel:tcd 10 Iwo IJIlC fon·cs

non-linear shdltheory leads here to observably dilferent results even before the membrane
strains reaeh i' ~ 0.0 I.

9.3. Clllmped circlllar cylinder made or ,\loolley ma/erial linda ex/cowl pressure
This two-dimensional highly non-linear shell problem was not yet analyzed in the

literature within the large strain range. In order to lind easier the hUl:kling mode and to
determine the postbuckling behaviour, two small additional forl:es have been a·pplied to the
diametril:ally opposite points in the middle of the shell. Again both versions M LU and
M LUS of our large-strain theory give pral:til:ally winl:iding results. while the c1assic.11 LSU
theory leads to considerably different solution curve (see Fig. -l). The moderate strain
solution MMLS starts to diverge considerably from the large strain solution after the
membrane strains increased above 3%.

Further examples obtained for doubly curved shells of revolution in Schieck (1989)
I:onflrm the results presented here. In particular. in all cases analyzed the ditTcrence between
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the MLU and \1LUS versions of the theory have remained below 2";'. The error of this
order has been already introduced into our shell theory by ignoring the transverse shear
strains. Therefore. we believe that for engineering analysis of rubber-like shdls the use of
the simplest approximation (47) to the elastic strain energy function is fully justitled.
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